Miért működnek a dolgok így?

Először meg kell értenünk, hogy mi az erő és az energia, és mit csinál a forgó tömeg ezzel az erővel vagy energiával. A közhiedelemmel ellentétben a forgó tömeg nem fogyaszt energiát. Forgó (vagy mozgó) tömeg üzletek energia. Ez a hatás nagyjából megegyezik az energiának a vödörbe öntésével, hasonlóan a kondenzátor töltéséhez egy elektronikai áramkörben. Gyakorlatilag az összes tárolt energia, kivéve a hővé történő átalakulás során elveszett energiát, még mindig megvan és rendelkezésre áll a jövőbeni munkák elvégzésére. Az a jövő, ahol az energia visszatér, később milliszekundumokkal későbbre tehet, és segíthet bennünket, vagy később is jelentős időbe telhet, és energiát pazarolhat el. Ezért nagyon fontos az idő.

álló

A hasznos energiatárolás egyik példája az autó lendkerék és főtengely. A főtengelyre ható erő impulzusokban van. A közös négy ciklusú V8-nak főtengelyfordulatonként négy teljesítményciklusa van, és a hajtókar másodpercenként 100 fordulatot tartalmaz. 6000 fordulat/perc sebességgel egy 8 hengeres 4-ciklusú 400 impulzus másodpercenként. A lendkerék (a forgó egység harmonikus csillapítójával és súlyával együtt) kisimítja ezeket az impulzusokat azáltal, hogy tárolja és felszabadítja a hengerekben a robbanásokból származó impulzus energiát. Az eredmény egy sima forgás, amely nem tépi fel a sebességfokozatot, nem rezegteti meg az autót és nem veri a csapágyakat.

Mindig emlékeznünk kell a forgásra, vagy egy tömeg mozgása nem pusztítja el az energiát. Ha ez megtörténne, millió évvel ezelőtt abbahagyta volna a föld forogását! Annak megértése, hogy a súlyváltozások hogyan befolyásolják a teljesítményt, az, hogy megértsük a rendszer nagyon egyszerű alapvető energiaáramlását.

Például mindannyian tudjuk, hogy két medence labda az ütközés után végül megpihen. Csak azért hagyják abba a mozgást, mert a alkalmazott energia (a jelzőpálca mozgatásából) végül hővé (a levegővel és az asztallal való súrlódásból) és hanggá (ami nem túl sok az energiaveszteségből) alakul. A labda mozgása az asztal filcfelülete mentén és a levegőn keresztül a két mozgó golyón kívüli energiát továbbítja az asztal körüli levegőbe és környezetbe, valamint magába az asztalba. Az asztal és a levegő hőmérséklete mindig enyhén emelkedik, mert az alkalmazott energia az általunk "látott" rendszeren kívül mozog! Mivel a hőenergia nagyon nagy területen oszlik el, nem vesszük észre a hőmérséklet emelkedését. Csak azt vesszük észre, hogy a golyók gyorsan abbahagyták a mozgást.

Egy másik példa az autónk fékje. Az autó mozgó tömegében tárolt energia hővé alakul át a fékbetétek súrlódásával, amely a forgó kerekekhez rögzített fém rotorokhoz dörzsölődik. Ez átalakítja a tárolt energiát (a motor súlyát a jármű súlyába) hővé, és a hő (amely tartalmazza az összes energiát) kisugárzik a levegőbe. A legtöbb, amit valójában egy autóban csinálunk, a hő hőmozgása.

Newton első törvénye

A tömeg nyugalmi állapotában folytatódik, vagy egyenes vonalban folytatja az egyenletes mozgást, hacsak nem kényszerítik az állapot megváltoztatására a rá ható erőkkel.

Az olyan öreg srácoknak, mint Newton, biztosan sok idő állt a kezükbe, hogy egyszerű dolgokon gondolkodjanak, de jól megértették. A világűrben végigfutó rakéta jó példa. Örökké fog tartani egyenes vonalban, hacsak nem ér el valamit, vagy ha a gravitáció vagy más erő új irányba húzza. A Föld akar egyenes vonalban mozogni, kivéve, ha a gravitációs vonzódás a nap felé állandóan meghajlik. A golyó ugyanúgy reagál, kivéve, ha a levegővel és a gravitációval való súrlódás a távolság során fokozatosan megváltoztatja az irányt és a sebességet.

Newton második törvénye

A testre ható adott erő által előidézett gyorsulás egyenesen arányos az erő nagyságával és fordítottan arányos a test tömegével.

Keményebben és/vagy tovább nyomunk, és valami gyorsabban mozog. Ha nehezebb, akkor hosszabbat vagy erősebben (vagy mindkettőt) kell tolnunk, hogy azonos sebességet érjünk el. Több energiára van szükség ahhoz, hogy egy nehezebb tárgyat ugyanolyan sebességre gyorsítsunk, mint egy könnyebb tárgyat ugyanarra a sebességre. Vagy nagyobb erőt, vagy ugyanazt az erőt hosszabb ideig alkalmazhatjuk, hogy valami gyorsabban mozogjon. Ez körülbelül a TIME-szorosa a teljesítménynek, vagy az az idő, amikor TIME-ra egy erő-mennyiséget alkalmazunk. Ez az oka annak, hogy ezek a nagy bemutatók végül egy nagy hajót, vasúti kocsit vagy repülőgépet mozgathatnak. Csak alacsony súrlódásra és elegendő időre van szükség, és aki nem képes két darab gumiabronccsal mozgatni a Volkswagent, az guríthat egy 10 tonnás vasúti kocsit.

Gyorsulás, energia és erő


Gyorsulás, definíció szerint irányváltás vagy sebességváltozás. Ha lassítunk valamit, az gyorsulás, csak negatív irányba. Ha egy járművet vagy bármely más tömeget új irányba fordítunk, akkor ez valóban új szögben vagy új irányban gyorsul. Ezért hasonlíthatjuk össze vagy definiálhatjuk a fékezést és a kanyarodást G-erőben (g), ugyanúgy, mint a "felszállás" gyorsítással.

Erőt (és ez azt jelenti, hogy energiát alkalmazunk) idővel (az idővel alkalmazott erő hatalom) egy tárgy felgyorsítására. Ha egy csúcsot akarunk forgatni, akkor a tengelytől a derékszögben erőt alkalmazunk a tengelyre. A csúcs tárolja az általunk alkalmazott energiát, és folyamatosan forog. Idővel a tárolt erő súrlódásból származó hővé alakul át, és a teteje fokozatosan lassul, míg végül leáll.

Az erő nyomás vagy energia. A termék az erő alkalmazásának ideje és a mennyiségű erő a hatalom. Az időbeli hatalom nagyon hasznos dolog számunkra, mert ez azt jelenti, hogy tudunk vele dolgozni. A hatalom önmagában, idő nélkül, nem annyira hasznos. Hadd mondjak néhány példát:

A "watt" az erő mértéke, hasonlóan a lóerőhöz. A "watt" önmagában nem sebesség, mert a watt nem tartalmazza a meghatározott alkalmazási időt. A watt csak az energia teljesítményszintje vagy munkaszintje egy meghatározatlan idő alatt.

Ha beleszámítunk egy órát, akkor wattóránk lenne. A kilowattóra, a watt-másodperc, a wattóra és a teljesítményszint és az idő egyéb kombinációi határozzák meg az elektromos energiát vagy a munkát. Ezért számláztunk kilowattóráért otthonunkban! Ha sima régi "wattokért" számláznánk, senkinek nem mondaná meg, hogy mennyi "munkát" vettünk. A wattok valódi skaláris (egydimenziós) mértéke a munkaképességnek, akárcsak a lóerő. Mindkettő erőt vagy képességet jelez a munka elvégzésére, de mindkettő nem tartalmazza a munkaidő beillesztését, így fogalmunk sincs, hogy mennyi munkát végeztek vagy lehetne elvégezni.

A lóerő az RPM és a forgatónyomaték függvénye, akárcsak a watt voltszorosa az amperes értéknek. A lóerő hasznos munka elvégzésének képessége, de a tényleges munka elvégzése megköveteli idő. A nyomaték nyomás, és mivel nem tartalmazza a sebességet, nem túl hasznos mértéke a rendszer teljesítményének, vagy a súly gyorsulásának vagy mozgatásának képességének. Annak ellenére, amit hallunk, főtengely a forgatónyomaték nem kapcsolódik közvetlenül ahhoz, hogy valamit elmozdítsanak a vonalról, vagy nehéz tehert húzzanak. Fent a motornál valóban a lóerőről van szó. A lóerő (nyomaték egy bizonyos fordulatszámnál) végül a hajtóműveken és más mechanikus eszközökön keresztül más fordulatszámra változik új nyomatékértékre. Végül csak az számít a gumiabroncsok érintkezési foltjának forgási nyomására, amely előre hajtja az autónkat. A 800 lb/ft nyomaték 2000 fordulat/perc motor mellett nem gyorsítja fel a járművet, valamint a 400 lb/ft motor a 5000 fordulat/perc sebességnél, mert a lóerő a nyomaték és az RPM szorzata. A nagyobb fordulatszámú motor úgy állítható be, hogy nagyobb nyomást biztosítson a kerekeken. A nagyobb fordulatszámú motor, kisebb nyomatékkal, több lóerővel rendelkezik.

Ha észreveszi, az ET számológépek nem kérnek nyomatékot. A nyomaték ugyanis nem számszerűsíti a munkavégzés képességét. Az ET-számológépek lóerőt kérnek, mert a lóerő egyértelműen meghatározza a munkavégzés képességét.

A joule a munkavégzés képességének másik általános mércéje. A joule mind az időt, mind az erőt (nyomást) magában foglalja. Egy joule egy watt másodperc, vagy egy másodpercig alkalmazott egy watt egyenértéke. Egy joule lehet 10 watt, amelyet 1/10-ed másodpercre lehet alkalmazni (10 * 1/10 = 1), az idő és az erő szorzatának csak egy Watt-másodpercnek kell lennie egy joule előállításához. Ha KÉT wattot alkalmazunk 1/2 másodpercig, ugyanaz a munkánk. Két watt 1/2 másodpercig egy joule (2 * 1/2 = 1).

A lóerő kilowattban is megadható. Egy lóerő kb. 0,7457 kilowatt, vagyis 745,7 watt (a pontos érték 0,745699872 kilowatt)). Ez azt jelenti, hogy 746 watt egy másodpercre 746 joule, és ez egy lóerő másodperc! Egy kilowatt 1,341 lóerő.

Számos európai motort kilowattban adnak meg lóerő helyett, valószínűleg ezt látta. Egy 300 lóerős motor körülbelül 223,7 kilowatt lenne. A ház valószínűleg 2–5 kilowatt átlagfogyasztást igényel, attól függően, hogy mekkora és mennyit fűt vagy hűti. Ez valahol az átlagos teljesítmény 2-1/2-7 lóerő között van. Gondoljon arra, hogy mi történne az elektromos hálózattal, ha az összes személygépkocsinkat és teherautónkat, mint ahogy azt a zöldek akarják, villamos energiára alakítanánk! Nagyon gyorsan elfogyna az áram.

Hány joule van 1492 wattban, ha 1/2 másodpercig alkalmazzák? 1/2-szer 1492 vagy 746 joule! 746 joule egy lóerős másodperc. Joule-ban értékelhetnénk motorjainkat, ha az energiát és az időt is be kell számolnunk.

Lóerő és gyorsulás

Tudjuk, hogy a lóerő önmagában nem a hasznos munkaeredmények mértéke, tudnunk kell azt az időt, amikor egy bizonyos lóerőt alkalmaznak (vagy eltávolítanak), hogy tudják, hogyan befolyásolja a gyorsulást. Szerencsére vannak olyan lóerő-számológépek, amelyek előrejelzik az ET-t egy adott teljesítményre. Ezek a számológépek azért működnek, mert ismerik a távolságot, ismerik az alkalmazott lóerőt (feltételezik, hogy állandó), és ebből ki tudják számolni a sebességet és az eltelt időt. Ezt azért teszik, mert feltételezik, hogy az energiát folyamatosan használják, és kiszámítják a sebesség változását az idő múlásával. A sebesség és az idő alapján megkapják a távolságot. Amikor meglátják az 1/4 mérföldet (vagy 1/8 mérföldet), abbahagyják a számolást, és megjelenítik a sebességet, valamint az adott sebesség és távolság eléréséhez szükséges időt.

Most itt van egy érdekes dolog. Bizonyos számú lóerő-másodperc (bizonyos felhasznált energia) szükséges egy adott sebesség eléréséhez. Ha kétszer olyan nehézzé tesszük a járművet, akkor kétszer annyi lóerős másodpercre (kétszer annyi energiára) van szükség, hogy azonos sebességgel haladjunk.

Nyissa meg például ezt a linket:

Most alkalmazzunk 100 LE-t, hogy 1/4 mérföldet haladjunk egy 1000 kilós járművel. 12,55 másodperc alatt 108,6 MPH-t mentünk. Tegyük fel, hogy van egy 2000 fontos autónk. Ahhoz, hogy azonos sebesség és idő legyen, meg kell dupláznunk az alkalmazott erőt is. Ha 200 LE-t alkalmazunk 2000 kilós autónkban, akkor pontosan ugyanaz az ET és MPH! Most már tudjuk, hogy a biztosítótársaságok a 60-as évek végén miért korlátozták a biztosítást 10: 1 vagy annál nagyobb lóerő arányú autóra. Nem érdekelt, hogy ez egy 4400 fontos Super Bee Dodge 425 LE-s hemidióval vagy 315 LE 3200 fontos Hurst Rambler Scrambler-rel volt-e, a biztosítótársaságok 10: 1 aránynál nagyobb súlyt akartak kapni, vagy nem tudott biztosítást vásárolni. A 10: 1 súlylóerő legjobb esetben 108,6 MPH 12,55 másodperces autónál! A American American Motors 10: 1 súlyú HP Hurst S/C Rambler dokumentált tényként új nemzeti ET rekordot állított fel 12,54 másodperc alatt 1/4 mérföldre 1970 körül.

Tegyük fel, hogy meg akarjuk változtatni a hajtótengely forgó tömegét, hogy javítsuk a hátsó kerekek elérhető teljesítményét. Mindannyian tudjuk, hogy a hajtótengely súlyának legnagyobb része a külső szélén van. Ez egy üreges cső. Tegyük fel, hogy az eredeti tengely súlya 30 font volt, és 15 fontos alumínium tengelyre szeretnénk cserélni. A hajtótengely átmérője 3,5 hüvelyk.

Mehetünk egy másik számológépbe, hogy megtaláljuk a hajtótengelyben tárolt joule-kat! Amikor ismerjük a joule-kat, tudjuk, milyen lóerős másodpercek teltek el az autó mozgatásától. Tegyük fel, hogy a motor 6000 fordulat/perc sebességgel csúcsosodik ki az 1/4 mérföld végén, és ez 13 másodpercet vett igénybe.

Ugrás erre a számológépre:

Az eredeti hajtótengely súlya 30 font volt, és 6000 fordulat/perc sebességre kellett fordítanunk. Ha ezt megadjuk, akkor látjuk, hogy 5310 joule-t fogyasztott (és tárolt). 480 uncia 3,5 hüvelyk átmérőjű RING (üreges középen) és 6000 ford/perc sebességgel.

Ez 5310/746 = 7,12 lóerős másodperc, hogy a tengelyt 6000-re forgassa. Mivel az idő 13 másodperc volt, a tengely 0,548 lóerőt szívott fel, elosztva a 13 másodperc alatt.

Most átállunk az alumínium tengelyre. A súly kivételével minden ugyanaz, most 15 font vagy 240 uncia. A lendkerék kalkulátor segítségével 2655 joule-t használtunk. Ez 2655/746 = 3,56 lóerős másodperc. 13 másodperc alatt 274 lóerőt "tároltunk". A rendelkezésre álló energia nettó nyeresége 13 másodperc alatt körülbelül 1/4 lóerő volt.

Itt van az igazi szabály, hogy ez hogyan működik.

Ha nagyon nagy átmérőjű vagy nagyon nehéz tömeget forgatunk fel, és gyorsan csináljuk, akkor sok rendelkezésre álló energiát áldozunk fel. Ha nagyon kis átmérőjű tömeget forgatunk fel, különösen hosszabb ideig, akkor kevesebb energiát adunk fel bármikor.

Az alumínium lendkerékről az acél lendkerékre való áttérés sokkal hangsúlyosabb, mint az azonos súlyú változás a hajtótengelyben, mert az alumínium kerék sokkal nagyobb átmérőjű. A lendkereket gyorsítjuk és lassítjuk is, miközben gyorsulunk és váltunk, ahelyett, hogy simán felpörgetnénk a dolgot, mint egy hajtótengely.

Az igazság a húzóversenyre vonatkozik, hacsak nincs Isten-szörnyű gyors vagy egy közúti versenyautónk, ahol azonnal meg kell változtatnunk a teljesítményt, az alumínium kerék alig érzékelhetően megváltoztatja az acél lendkereket. Az alumínium kerék valóban lassabb lehet egy húzóautóban, mert az alkalmazott teljesítmény nem olyan sima. Nehezebb egy könnyű alumínium lendkereket kijuttatni a lyukból, és ez könnyen ellensúlyozhatja az esetleges kis "rendelkezésre álló teljesítmény" változásokat.

Összegzés

Ez egy közelítés, amelynek célja, hogy ésszerűen megérezze, hogy a forgó tömeg változása hogyan befolyásolja a gyorsulást. Láthatjuk, hogy a súly felpörgetésére kinyert teljesítmény nem túl sok, ha nem forogunk túl gyorsan, vagy ha az, amit megpörgetünk, nem túl nehéz és/vagy nagyon nagy átmérőjű. Az az "érzés", amelyhez a legtöbb ember ragaszkodik (és papagáj), hogy "a nehezebb forgó tömeg megöli a gyorsulást". Ez általában egyáltalán nem igaz a nagy nehézkocsikra, bár igaz is lehet. A legtöbb dolog, ami miatt aggódunk, nem tesz érezhető különbséget a dolgok nagyszerű felépítésében. Soha nem zavarnám, ha autómban acélból alumínium hajtótengelybe váltok, mert autóm 11 másodpercet vesz igénybe, hogy 1/4 mérföldet megtegyen. Az autó súlya 3000 font, és ez azt jelenti, hogy 20 font súlyt és fél lóerőt spórolhatok meg, amelyet elveszítettem, ha ezt a súlyt megpörgettem a pálya hosszában. 400 dollár egyáltalán nem jó befektetés 1/2 lóerőnél a pálya hosszában, vagy a 11 másodpercig alkalmazott extra 1/2 lóerő a végén ki kell nyernem, és fékemmel vissza kell alakítanom hővé.

Nem igazán kell attól tartanom, hogy a dolgok milyen gyorsan forognak fel ezen a ponton. Nem érdekel, hogy a hajtókar 50 fontból 12 kilóval könnyebb-e. Nem érdekel, hogy a hajtótengely 30 fontból 15 kilóval könnyebb! Jelenleg ez a 400–1000 dollár sokkal tovább megy, ha további 20 motor lóerőt hozna létre, vagy eltávolítana 60 font statikus súlyt. Amikor kezdem kifogyni a könnyű erőből, akkor pénzt fogok költeni, hogy könnyebbé tegyem a drága dolgokat. A nagy probléma jelenleg a tapadás, ezért most szeretném kisimítani az áramellátást. Az utolsó dolog, amire szükségem van, az, hogy könnyebb lendkerék használatával kritikusabbá tegyem az autót az RPM indításakor, vagy egy könnyebb hajtótengely használatával jobban megrázom az abroncsokat. Az első nagyobb súlycsökkentés az első K tagok lesz, mert ezzel eltávolítanák a súlyt az elől, és hatékonyan hozzáadnák a súly nagyobb részét a hátsó kerekekhez! A kocsim utolsó súlycsökkentése alumínium lendkerék vagy hajtótengely lesz.